Toward singularity theorems with torsion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10495252" target="_blank" >RIV/00216208:11320/24:10495252 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2-lloXOZTd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2-lloXOZTd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.110.064082" target="_blank" >10.1103/PhysRevD.110.064082</a>
Alternative languages
Result language
angličtina
Original language name
Toward singularity theorems with torsion
Original language description
This study examines the formulation of a singularity theorem for timelike curves including torsion, and establishes the foundational framework necessary for its derivation. We begin by deriving the relative acceleration for an arbitrary congruence of timelike curves. The resulting "deviation equation" offers an alternative pathway to the well-known Raychaudhuri equation with torsion. Conjugate points are then introduced and analyzed in relation to the behavior of the scalar expansion. Together with the sensible requirement of hypersurface orthogonality, the Raychaudhuri equation is examined for several specific cases of torsion that are prominent in the literature. Our findings indicate that a totally antisymmetric torsion tensor does not influence the behavior of the congruence of timelike curves. Finally, we formulate a singularity theorem for timelike curves and highlight the critical requirement of nonautoparallel curves.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
110
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
064082
UT code for WoS article
001389343000008
EID of the result in the Scopus database
2-s2.0-85204966062