All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toward singularity theorems with torsion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10495252" target="_blank" >RIV/00216208:11320/24:10495252 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2-lloXOZTd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2-lloXOZTd</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.110.064082" target="_blank" >10.1103/PhysRevD.110.064082</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toward singularity theorems with torsion

  • Original language description

    This study examines the formulation of a singularity theorem for timelike curves including torsion, and establishes the foundational framework necessary for its derivation. We begin by deriving the relative acceleration for an arbitrary congruence of timelike curves. The resulting &quot;deviation equation&quot; offers an alternative pathway to the well-known Raychaudhuri equation with torsion. Conjugate points are then introduced and analyzed in relation to the behavior of the scalar expansion. Together with the sensible requirement of hypersurface orthogonality, the Raychaudhuri equation is examined for several specific cases of torsion that are prominent in the literature. Our findings indicate that a totally antisymmetric torsion tensor does not influence the behavior of the congruence of timelike curves. Finally, we formulate a singularity theorem for timelike curves and highlight the critical requirement of nonautoparallel curves.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    064082

  • UT code for WoS article

    001389343000008

  • EID of the result in the Scopus database

    2-s2.0-85204966062