Prefix Text as a Yarn: Eliciting Non-English Alignment in Foundation Language Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A5LLDRFMD" target="_blank" >RIV/00216208:11320/25:5LLDRFMD - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197193990&partnerID=40&md5=c4895ea8a5da596264097f2354211234" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197193990&partnerID=40&md5=c4895ea8a5da596264097f2354211234</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Prefix Text as a Yarn: Eliciting Non-English Alignment in Foundation Language Model
Original language description
While supervised fine-tuning (SFT) has been a straightforward approach for tailoring the output of foundation large language model (LLM) to specific preferences, concerns have been raised about the depth of this alignment, with some critiques suggesting it is merely “superficial”. We critically examine this hypothesis within the scope of cross-lingual generation tasks, proposing that the effectiveness of SFT may be constrained by its reliance on prior tokens to guide cross-lingual generation. Based on this crucial insight, and in response to the challenges posed by the costly and limited availability of non-English data for SFT, we introduce a novel training-free alignment method named PRETTY, which employs minimal task-related prior tokens to bridge the foundation LLM and the SFT LLM, achieving comparable performance without training. Experiments on machine translation and part-of-speech tagging across eight languages demonstrate the efficacy of PRETTY in cross-lingual settings. Remarkably, by initiating the decoding process with only one or two prior tokens, foundation LLMs can achieve performance comparable to their SFT counterparts. This method presents a cost-effective alternative to SFT and advances the democratization of multilingual LLMs. © 2024 Association for Computational Linguistics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176099-8
ISSN
0736-587X
e-ISSN
—
Number of pages
15
Pages from-to
12131-12145
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
Hybrid, Bangkok
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—