All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Where are we Still Split on Tokenization?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6FBSGVSC" target="_blank" >RIV/00216208:11320/25:6FBSGVSC - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188745092&partnerID=40&md5=1ec486ce18b0cb9be7360d528093b48c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188745092&partnerID=40&md5=1ec486ce18b0cb9be7360d528093b48c</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Where are we Still Split on Tokenization?

  • Original language description

    Many Natural Language Processing (NLP) tasks are labeled on the token level, for these tasks, the first step is to identify the tokens (tokenization). Because this step is often considered to be a solved problem, gold tokenization is commonly assumed. In this paper, we investigate if this task is solved with supervised tokenizers. To this end, we propose an effient multi-task model for tokenization that performs on-par with the state-of-the-art. We use this model to reflect on the status of performance on the tokenization task by evaluating on 122 languages in 20 different scripts. We show that tokenization performance is mainly dependent on the amount and consistency of annotated data as well as difficulty of the task in the writing systems. We conclude that besides inconsistencies in the data and exceptional cases the task can be considered solved for Latin languages for in-dataset settings (>99.5 F1). However, performance is 0.75 F1 point lower on average for datasets in other scripts and performance deteriorates in cross-dataset setups. © 2024 Association for Computational Linguistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EACL - Conf. Eur. Chapter Assoc. Comput. Linguist., Find. EACL

  • ISBN

    979-889176093-6

  • ISSN

  • e-ISSN

  • Number of pages

    20

  • Pages from-to

    118-137

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    St. Julian's

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article