Holistic Exploration on Universal Decompositional Semantic Parsing: Architecture, Data Augmentation, and LLM Paradigm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6TIQXW8U" target="_blank" >RIV/00216208:11320/25:6TIQXW8U - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204923340&partnerID=40&md5=9aacebb8f7b0c75a6e4a6edd8bb9c4af" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204923340&partnerID=40&md5=9aacebb8f7b0c75a6e4a6edd8bb9c4af</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Holistic Exploration on Universal Decompositional Semantic Parsing: Architecture, Data Augmentation, and LLM Paradigm
Original language description
In this paper, we conduct a holistic exploration of Universal Decompositional Semantic (UDS) parsing, aiming to provide a more efficient and effective solution for semantic parsing and to envision the development prospects after the emergence of large language models (LLMs). To achieve this, we first introduce a cascade model for UDS parsing that decomposes the complex task into semantically appropriate subtasks. Our approach outperforms prior models while significantly reducing inference time. Furthermore, to further exploit the hierarchical and automated annotation process of UDS, we explore the use of syntactic information and pseudo-labels, both of which enhance UDS parsing. Lastly, we investigate ChatGPT’s efficacy in handling the UDS task, highlighting its proficiency in attribute parsing but struggles in relation parsing, revealing that small parsing models still hold research significance. Our code is available at https://github.com/hexuandeng/HExp4UDS. © 2024 Association for Computational Linguistics
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SIGHAN - SIGHAN Workshop Chin. Language Processing, Proc. Workshop
ISBN
979-889176155-1
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
45-57
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
Bangkok
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—