All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Zero-shot Cross-lingual POS Tagging for Filipino

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A7IVJPSUV" target="_blank" >RIV/00216208:11320/25:7IVJPSUV - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204281744&partnerID=40&md5=dce287ff65885c38d67ee1019c2837dc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204281744&partnerID=40&md5=dce287ff65885c38d67ee1019c2837dc</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Zero-shot Cross-lingual POS Tagging for Filipino

  • Original language description

    Supervised learning approaches in NLP, exemplified by POS tagging, rely heavily on the presence of large amounts of annotated data. However, acquiring such data often requires significant amount of resources and incurs high costs. In this work, we explore zero-shot cross-lingual transfer learning to address data scarcity issues in Filipino POS tagging, particularly focusing on optimizing source language selection. Our zero-shot approach demonstrates superior performance compared to previous studies, with top-performing fine-tuned PLMs achieving F1 scores as high as 79.10%. The analysis reveals moderate correlations between cross-lingual transfer performance and specific linguistic distances–featural, inventory, and syntactic–suggesting that source languages with these features closer to Filipino provide better results. We identify tokenizer optimization as a key challenge, as PLM tokenization sometimes fails to align with meaningful representations, thus hindering POS tagging performance. ©2024 Association for Computational Linguistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    FieldMatters - Workshop NLP Appl. Field Linguist. - Proc. Workshop

  • ISBN

    979-889176158-2

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    69-77

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    Bangkok

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article