Zero-shot Cross-lingual POS Tagging for Filipino
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A7IVJPSUV" target="_blank" >RIV/00216208:11320/25:7IVJPSUV - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204281744&partnerID=40&md5=dce287ff65885c38d67ee1019c2837dc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204281744&partnerID=40&md5=dce287ff65885c38d67ee1019c2837dc</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Zero-shot Cross-lingual POS Tagging for Filipino
Original language description
Supervised learning approaches in NLP, exemplified by POS tagging, rely heavily on the presence of large amounts of annotated data. However, acquiring such data often requires significant amount of resources and incurs high costs. In this work, we explore zero-shot cross-lingual transfer learning to address data scarcity issues in Filipino POS tagging, particularly focusing on optimizing source language selection. Our zero-shot approach demonstrates superior performance compared to previous studies, with top-performing fine-tuned PLMs achieving F1 scores as high as 79.10%. The analysis reveals moderate correlations between cross-lingual transfer performance and specific linguistic distances–featural, inventory, and syntactic–suggesting that source languages with these features closer to Filipino provide better results. We identify tokenizer optimization as a key challenge, as PLM tokenization sometimes fails to align with meaningful representations, thus hindering POS tagging performance. ©2024 Association for Computational Linguistics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
FieldMatters - Workshop NLP Appl. Field Linguist. - Proc. Workshop
ISBN
979-889176158-2
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
69-77
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
Bangkok
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—