Quantum-inspired Neural Network Based on Stochastic Liouville-von Neumann Equation for Sentiment Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A7K62P27L" target="_blank" >RIV/00216208:11320/25:7K62P27L - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205003619&doi=10.1109%2fIJCNN60899.2024.10650170&partnerID=40&md5=9ce37a939da1c173422d593ac10513d3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205003619&doi=10.1109%2fIJCNN60899.2024.10650170&partnerID=40&md5=9ce37a939da1c173422d593ac10513d3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN60899.2024.10650170" target="_blank" >10.1109/IJCNN60899.2024.10650170</a>
Alternative languages
Result language
angličtina
Original language name
Quantum-inspired Neural Network Based on Stochastic Liouville-von Neumann Equation for Sentiment Classification
Original language description
Quantum-inspired models have shown enhanced capabilities in various language tasks, including question answering and sentiment analysis. However, current complex-valued-based models primarily focus on sentence embedding, overlooking the significance of the quantum evolution process and the extra time cost incurred by complex expressions. In this work, we present a novel quantum-inspired neural network, SSS-QNN, which integrates the Stochastic Liouville-von Neumann Equation (SLE) to simulate the evolution process and the complex-valued simple recurrent unit (SRU) to reduce the time cost, offering the model physical meaning, thus enhancing the interpretability. We conduct comprehensive experiments on both sentence-level and document-level sentiment classification datasets. Compared to traditional models, large language models, and quantum-inspired models, SSS-QNN demonstrates competitive performance in accuracy and time cost. Additional ablation tests verify the effectiveness of the proposed modules. © 2024 IEEE.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc Int Jt Conf Neural Networks
ISBN
979-835035931-2
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
—
Event location
Yokohama
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—