DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8SG27LRT" target="_blank" >RIV/00216208:11320/25:8SG27LRT - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205383898&doi=10.1007%2f978-3-031-70239-6_29&partnerID=40&md5=12e4b95a4af0c685857215a38298072d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205383898&doi=10.1007%2f978-3-031-70239-6_29&partnerID=40&md5=12e4b95a4af0c685857215a38298072d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70239-6_29" target="_blank" >10.1007/978-3-031-70239-6_29</a>
Alternative languages
Result language
angličtina
Original language name
DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection
Original language description
Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lect. Notes Comput. Sci.
ISBN
978-303170238-9
ISSN
0302-9743
e-ISSN
—
Number of pages
16
Pages from-to
423-438
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
—
Event location
Turin
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—