A Truly Joint Neural Architecture for Segmentation and Parsing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A9ER9FXQB" target="_blank" >RIV/00216208:11320/25:9ER9FXQB - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189939516&partnerID=40&md5=70f693e0fe5497b39d58a39eaccea8bf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189939516&partnerID=40&md5=70f693e0fe5497b39d58a39eaccea8bf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Truly Joint Neural Architecture for Segmentation and Parsing
Original language description
Contemporary multilingual dependency parsers can parse a diverse set of languages, but for Morphologically Rich Languages (MRLs), performance is attested to be lower than other languages. The key challenge is that, due to high morphological complexity and ambiguity of the space-delimited input tokens, the linguistic units that act as nodes in the tree are not known in advance. Pre-neural dependency parsers for MRLs subscribed to the joint morpho-syntactic hypothesis, stating that morphological segmentation and syntactic parsing should be solved jointly, rather than as a pipeline where segmentation precedes parsing. However, neural state-of-the-art parsers to date use a strict pipeline. In this paper we introduce a joint neural architecture where a lattice-based representation preserving all morphological ambiguity of the input is provided to an arc-factored model, which then solves the morphological segmentation and syntactic parsing tasks at once. Our experiments on Hebrew, a rich and highly ambiguous MRL, demonstrate state-of-the-art performance on parsing, tagging and segmentation of the Hebrew section of UD, using a single model. This proposed architecture is LLM-based and language agnostic, providing a solid foundation for MRLs to obtain further performance improvements and bridge the gap with other languages. © 2024 Association for Computational Linguistics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EACL - Conf. European Chapter Assoc. Comput. Linguist., Proc. Conf.
ISBN
979-889176088-2
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
1408-1420
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
St. Julian's
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—