Multilingual Models for ASR in Chibchan Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A9JRLFHVX" target="_blank" >RIV/00216208:11320/25:9JRLFHVX - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200248556&partnerID=40&md5=4ce05a16cb985e771879e88dc9759f2c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200248556&partnerID=40&md5=4ce05a16cb985e771879e88dc9759f2c</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multilingual Models for ASR in Chibchan Languages
Original language description
We present experiments on Automatic Speech Recognition (ASR) for Bribri and Cabécar, two languages from the Chibchan family. We finetune four ASR algorithms (Wav2Vec2, Whisper, MMS & WavLM) to create monolingual models, with the Wav2Vec2 model demonstrating the best performance. We then proceed to use Wav2Vec2 for (1) experiments on training joint and transfer learning models for both languages, and (2) an analysis of the errors, with a focus on the transcription of tone. Results show effective transfer learning for both Bribri and Cabécar, but especially for Bribri. A post-processing spell checking step further reduced character and word error rates. As for the errors, tone is where the Bribri models make the most errors, whereas the simpler tonal system of Cabécar is better transcribed by the model. Our work contributes to developing better ASR technology, an important tool that could facilitate transcription, one of the major bottlenecks in language documentation efforts. Our work also assesses how existing pre-trained models and algorithms perform for genuine extremely low resource-languages. ©2024 Association for Computational Linguistics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. Conf. North American Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol., NAACL
ISBN
979-889176114-8
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
8513-8527
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
Mexico City, Mexico
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—