All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

UDParse @ SIGTYP 2024 Shared Task: Modern Language Models for Historical Languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AADUHP93P" target="_blank" >RIV/00216208:11320/25:ADUHP93P - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189630518&partnerID=40&md5=d11e00a79b191c385d6d7e08f310566d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189630518&partnerID=40&md5=d11e00a79b191c385d6d7e08f310566d</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    UDParse @ SIGTYP 2024 Shared Task: Modern Language Models for Historical Languages

  • Original language description

    SIGTYP’s Shared Task on Word Embedding Evaluation for Ancient and Historical Languages was proposed in two variants, constrained or unconstrained. Whereas the constrained variant disallowed any other data to train embeddings or models than the data provided, the unconstrained variant did not have these limits. We participated in the five tasks of the unconstrained variant and came out first. The tasks were the prediction of part-of-speech, lemmas and morphological features and filling masked words and masked characters on 16 historical languages. We decided to use a dependency parser and train the data using an underlying pretrained transformer model to predict part-of-speech tags, lemmas, and morphological features. For predicting masked words, we used multilingual distilBERT (with rather bad results). In order to predict masked characters, our language model is extremely small: it is a model of 5-gram frequencies, obtained by reading the available training data. © 2024 Association for Computational Linguistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    SIGTYP - Workshop Res. Comput. Linguist. Typology Multiling. NLP, Proc. Workshop

  • ISBN

    979-889176071-4

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    142-150

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    St. Julian's, Malta

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article