U-DepPLLaMA: Universal Dependency Parsing via Auto-regressive Large Language Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABFCHW7L6" target="_blank" >RIV/00216208:11320/25:BFCHW7L6 - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206211493&doi=10.4000%2f125nm&partnerID=40&md5=d90ffea5d474323458bc2bc032c3e7a0" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206211493&doi=10.4000%2f125nm&partnerID=40&md5=d90ffea5d474323458bc2bc032c3e7a0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4000/125nm" target="_blank" >10.4000/125nm</a>
Alternative languages
Result language
angličtina
Original language name
U-DepPLLaMA: Universal Dependency Parsing via Auto-regressive Large Language Models
Original language description
This paper investigates the rapidly advancing domain of Large Language Models (LLMs) and their growing potential in various fields. A central focus is the exploration of LLMs, e.g., LLaMA, as powerful tools for modeling and representing linguistic information, especially in the realm of syntax. We aim to evaluate the ability of these models to encode syntactic information, especially when explicitly supplied, through fine-tuning processes. Traditionally, Dependency Parsing has relied on specific techniques and dedicated architectures. Our research shifts this approach, conceptualizing it as a sequence-to-sequence task where Language Models interpret and transform syntax into bracketed structures that reflect dependency graphs. We introduce U-DepPLLaMA (Universal Dependency Parsing via auto-regressive LLMs based on LLaMA), a novel architecture optimized for multilingual, end-to-end Dependency Parsing. Our experimental evaluation, across 50 datasets in 26 languages from the Universal Dependency Treebank, shows that LLMs can be effectively trained for dependency parsing without the need for task-specific architectures. The results are on par with current state-of-the-art methods and demonstrate resilience across varying sentence complexities and lengths. © 2024 Associazione Italiana di Linguistica Computazionale.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Italian Journal of Computational Linguistics
ISSN
2499-4553
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
21-38
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85206211493