All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Knowledge Sources

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AFFSZ4CN2" target="_blank" >RIV/00216208:11320/25:FFSZ4CN2 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204302789&doi=10.1007%2f978-981-97-0747-8_2&partnerID=40&md5=a0e5f0e5fb735802f7235de962b44028" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204302789&doi=10.1007%2f978-981-97-0747-8_2&partnerID=40&md5=a0e5f0e5fb735802f7235de962b44028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-0747-8_2" target="_blank" >10.1007/978-981-97-0747-8_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Knowledge Sources

  • Original language description

    Knowledge sources are essential components of many NLP tasks, such as question answering (Chen et al., Reading wikipedia to answer open-domain questions. Preprint, 2017), fact verification (Thorne et al., Fever: a large-scale dataset for fact extraction and verification. Preprint, 2018), entity linking (Guo and Barbosa, Semantic Web 9(4):459–479, 2018; Josifoski et al., Zero-shot entity linking with dense entity retrieval. EMNLP, 2020), slot filling (Levy et al., Zero-shot relation extraction via reading comprehension. Preprint, 2017), dialogue (Dinan et al., Wizard of wikipedia: Knowledge-powered conversational agents. Preprint, 2018), etc. One task can also be the knowledge source for another task, such part-of-speech tagging (Schmid, Part-of-speech tagging with neural networks. Preprint, 1994) for dependency parsing (Qi et al., Universal dependency parsing from scratch. Preprint, 2019), etc. However, the availability, quality, and suitability of different types of knowledge sources vary depending on the domain, language, and task requirements. This chapter provides a comprehensive overview of the main types of knowledge sources used in NLP, such as statistical models, knowledge bases, task specific corpus with human annotations, etc. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Knowledge-augmented Methods for Natural Language Processing

  • ISBN

    978-981-9707-49-2

  • Number of pages of the result

    15

  • Pages from-to

    7-21

  • Number of pages of the book

    255

  • Publisher name

    Springer

  • Place of publication

  • UT code for WoS chapter