Empirical Analysis for Unsupervised Universal Dependency Parse Tree Aggregation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AFHKLLZB5" target="_blank" >RIV/00216208:11320/25:FHKLLZB5 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2403.19183" target="_blank" >https://arxiv.org/abs/2403.19183</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2403.19183" target="_blank" >10.48550/arXiv.2403.19183</a>
Alternative languages
Result language
angličtina
Original language name
Empirical Analysis for Unsupervised Universal Dependency Parse Tree Aggregation
Original language description
Dependency parsing is an essential task in NLP, and the quality of dependency parsers is crucial for many downstream tasks. Parsers' quality often varies depending on the domain and the language involved. Therefore, it is essential to combat the issue of varying quality to achieve stable performance. In various NLP tasks, aggregation methods are used for post-processing aggregation and have been shown to combat the issue of varying quality. However, aggregation methods for post-processing aggregation have not been sufficiently studied in dependency parsing tasks. In an extensive empirical study, we compare different unsupervised post-processing aggregation methods to identify the most suitable dependency tree structure aggregation method.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ArXiv
ISSN
2331-8422
e-ISSN
—
Volume of the periodical
2024
Issue of the periodical within the volume
2024
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
1-11
UT code for WoS article
—
EID of the result in the Scopus database
—