All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

KU Leuven / Brepols-CTLO at EvaLatin 2024: Span extraction approaches for Latin dependency parsing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AI6AVTIU2" target="_blank" >RIV/00216208:11320/25:I6AVTIU2 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195194463&partnerID=40&md5=af2a73bf5f7901ebde97a6fc66405a5d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195194463&partnerID=40&md5=af2a73bf5f7901ebde97a6fc66405a5d</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    KU Leuven / Brepols-CTLO at EvaLatin 2024: Span extraction approaches for Latin dependency parsing

  • Original language description

    This report describes the KU Leuven / Brepols-CTLO submission to EvaLatin 2024. We present the results of two runs, both of which try to implement a span extraction approach. The first run implements span-span prediction, rooted in Machine Reading Comprehension, while making use of LaBERTa, a RoBERTa model pretrained on Latin texts. The first run produces meaningful results. The second, more experimental run operates on the token-level with a span-extraction approach based on the Question Answering task. This model finetuned a DeBERTa model, pretrained on Latin texts. The finetuning was set up in the form of a Multitask Model, with classification heads for each token's part-of-speech tag and dependency relation label, while a question answering head handled the dependency head predictions. Due to the shared loss function, this paper tried to capture the link between part-of-speech tag, dependency relation and dependency heads, that follows the human intuition. The second run did not perform well. © 2024 ELRA Language Resources Association: CC BY-NC 4.0.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Workshop Lang. Technol. Hist. Anc. Lang., LT4HALA LREC-COLING - Workshop Proc.

  • ISBN

    978-249381446-3

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    203-206

  • Publisher name

    European Language Resources Association (ELRA)

  • Place of publication

  • Event location

    Torino, Italia

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article