Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AI89URPFH" target="_blank" >RIV/00216208:11320/25:I89URPFH - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201101707&doi=10.1007%2f978-981-97-2716-2_19&partnerID=40&md5=39ce5825df4f63ba7fdd524197d8fdaf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201101707&doi=10.1007%2f978-981-97-2716-2_19&partnerID=40&md5=39ce5825df4f63ba7fdd524197d8fdaf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-2716-2_19" target="_blank" >10.1007/978-981-97-2716-2_19</a>
Alternative languages
Result language
angličtina
Original language name
Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications
Original language description
Modern techniques for most Natural Language Processing (NLP) activities have attained near-human functionality. This latest advancement has benefited countless individuals and companies throughout the globe. Unfortunately, most massive tagged databases are only accessible in a couple of languages; for many languages, either few or no tags are accessible to enable automatic NLP uses. As a result, among the priorities of cross-lingual NLP study is to build computing algorithms that leverage abundant resource corpora of languages and employ them in limited-resource language uses through transportable illustration learning. The paper covers the basic difficulties and suggests multiple approaches for cross-lingual illustration learning that employ common syntax dependence to link typological variations across languages and efficiently use unmarked supplies to learn solid and generalizable depictions. The methodologies suggested in this research efficiently translate across a broad spectrum of languages and NLP uses such as dependent parsing, titled entity identification, text categorization, query replying, and others. Test outcomes reveal that enhancing mBERT with syntax increases cross-lingual transfer by 1.4 and 1.6 scores on average for every targeted language in PAWS-X and MLQR, respectively. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Smart Innov. Syst. Technol.
ISBN
978-981972715-5
ISSN
2190-3018
e-ISSN
—
Number of pages
12
Pages from-to
203-214
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
—
Event location
Noida
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—