All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AI89URPFH" target="_blank" >RIV/00216208:11320/25:I89URPFH - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201101707&doi=10.1007%2f978-981-97-2716-2_19&partnerID=40&md5=39ce5825df4f63ba7fdd524197d8fdaf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201101707&doi=10.1007%2f978-981-97-2716-2_19&partnerID=40&md5=39ce5825df4f63ba7fdd524197d8fdaf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-2716-2_19" target="_blank" >10.1007/978-981-97-2716-2_19</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Navigating Cross-Lingual Natural Language Processing: Challenges, Strategies, and Applications

  • Original language description

    Modern techniques for most Natural Language Processing (NLP) activities have attained near-human functionality. This latest advancement has benefited countless individuals and companies throughout the globe. Unfortunately, most massive tagged databases are only accessible in a couple of languages; for many languages, either few or no tags are accessible to enable automatic NLP uses. As a result, among the priorities of cross-lingual NLP study is to build computing algorithms that leverage abundant resource corpora of languages and employ them in limited-resource language uses through transportable illustration learning. The paper covers the basic difficulties and suggests multiple approaches for cross-lingual illustration learning that employ common syntax dependence to link typological variations across languages and efficiently use unmarked supplies to learn solid and generalizable depictions. The methodologies suggested in this research efficiently translate across a broad spectrum of languages and NLP uses such as dependent parsing, titled entity identification, text categorization, query replying, and others. Test outcomes reveal that enhancing mBERT with syntax increases cross-lingual transfer by 1.4 and 1.6 scores on average for every targeted language in PAWS-X and MLQR, respectively. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Smart Innov. Syst. Technol.

  • ISBN

    978-981972715-5

  • ISSN

    2190-3018

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    203-214

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

  • Event location

    Noida

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article