A Workflow for HTR-Postprocessing, Labeling and Classifying Diachronic and Regional Variation in Pre-Modern Slavic Texts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AIQN969HY" target="_blank" >RIV/00216208:11320/25:IQN969HY - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195969249&partnerID=40&md5=2a4e0ffde0e92c7b2b0fea43ead2adaf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195969249&partnerID=40&md5=2a4e0ffde0e92c7b2b0fea43ead2adaf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Workflow for HTR-Postprocessing, Labeling and Classifying Diachronic and Regional Variation in Pre-Modern Slavic Texts
Original language description
We describe ongoing work for developing a workflow for the applied use case of classifying diachronic and regional language variation in Pre-Modern Slavic texts. The data were obtained via handwritten text recognition (HTR) on medieval manuscripts and printings and partly by manual transcription. Our goal is to develop a workflow for such historical language data, covering HTR-postprocessing, annotating and classifying the digitized texts. We test and adapt existing language resources to fit the pipeline with low-barrier tooling, accessible for Humanists with limited experience in research data infrastructures, computational analysis or advanced methods of natural language processing (NLP). The workflow starts by addressing ground truth (GT) data creation for diagnosing and correcting HTR errors via string metrics and data-driven methods. On GT and on HTR data, we subsequently show classification results using transfer learning on sentence-level text snippets. Next, we report on our token-level data labeling efforts. Each step of the workflow is complemented with describing current limitations and our corresponding work in progress. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
2039-2048
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—