All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Learning-Based Preprocessing Tools for Turkish Natural Language Processing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AIXIBKYLA" target="_blank" >RIV/00216208:11320/25:IXIBKYLA - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202632922&doi=10.1007%2f978-3-031-66705-3_15&partnerID=40&md5=e4b7a13018e011e2fe856762b6688db3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202632922&doi=10.1007%2f978-3-031-66705-3_15&partnerID=40&md5=e4b7a13018e011e2fe856762b6688db3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-66705-3_15" target="_blank" >10.1007/978-3-031-66705-3_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Learning-Based Preprocessing Tools for Turkish Natural Language Processing

  • Original language description

    As the demand for effective natural language processing applications in Turkish continues to rise, the need for text preprocessing tools tailored to the Turkish language increases. These tools form the initial step of any natural language application and improves the efficiency of complex tasks such as text summarization, question-answering, and machine translation. We propose a novel deep learning-based framework focusing on Turkish preprocessing tasks, including tokenization, sentence splitting, deasciification, part-of-speech tagging, vowelization, spell correction, and morphological analysis. The proposed framework is suitable for independent use of each preprocessing tool as well as the use in an all-in-one scheme. We use the CANINE model to train the character-level tools, and BERT and mT5 models for the token-based tools. We evaluate the framework for each task on the BOUN Treebank in the UD project and make both the tools and the codes publicly available. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Commun. Comput. Info. Sci.

  • ISBN

    978-303166704-6

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    218-234

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

  • Event location

    Dijon

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article