Deep Learning-Based Preprocessing Tools for Turkish Natural Language Processing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AIXIBKYLA" target="_blank" >RIV/00216208:11320/25:IXIBKYLA - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202632922&doi=10.1007%2f978-3-031-66705-3_15&partnerID=40&md5=e4b7a13018e011e2fe856762b6688db3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202632922&doi=10.1007%2f978-3-031-66705-3_15&partnerID=40&md5=e4b7a13018e011e2fe856762b6688db3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-66705-3_15" target="_blank" >10.1007/978-3-031-66705-3_15</a>
Alternative languages
Result language
angličtina
Original language name
Deep Learning-Based Preprocessing Tools for Turkish Natural Language Processing
Original language description
As the demand for effective natural language processing applications in Turkish continues to rise, the need for text preprocessing tools tailored to the Turkish language increases. These tools form the initial step of any natural language application and improves the efficiency of complex tasks such as text summarization, question-answering, and machine translation. We propose a novel deep learning-based framework focusing on Turkish preprocessing tasks, including tokenization, sentence splitting, deasciification, part-of-speech tagging, vowelization, spell correction, and morphological analysis. The proposed framework is suitable for independent use of each preprocessing tool as well as the use in an all-in-one scheme. We use the CANINE model to train the character-level tools, and BERT and mT5 models for the token-based tools. We evaluate the framework for each task on the BOUN Treebank in the UD project and make both the tools and the codes publicly available. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Commun. Comput. Info. Sci.
ISBN
978-303166704-6
ISSN
1865-0929
e-ISSN
—
Number of pages
17
Pages from-to
218-234
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
—
Event location
Dijon
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—