Integrating Headedness Information into an Auto-generated Multilingual CCGbank for Improved Semantic Interpretation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AJIW28NPR" target="_blank" >RIV/00216208:11320/25:JIW28NPR - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195952366&partnerID=40&md5=91c67ce50ec9e861451479b55e5df193" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195952366&partnerID=40&md5=91c67ce50ec9e861451479b55e5df193</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Integrating Headedness Information into an Auto-generated Multilingual CCGbank for Improved Semantic Interpretation
Original language description
Previously, we introduced a method to generate a multilingual Combinatory Categorial Grammar (CCG) treebank by converting from the Universal Dependencies (UD). However, the method only produces bare CCG derivations without any accompanying semantic representations, which makes it difficult to obtain satisfactory analyses for constructions that involve non-local dependencies, such as control/raising or relative clauses, and limits the general applicability of the treebank. In this work, we present an algorithm that adds semantic representations to existing CCG derivations, in the form of predicate-argument structures. Through hand-crafted rules, we enhance each CCG category with headedness information, with which both local and non-local dependencies can be properly projected. This information is extracted from various sources, including UD, Enhanced UD, and proposition banks. Evaluation of our projected dependencies on the English PropBank and the Universal PropBank 2.0 shows that they can capture most of the semantic dependencies in the target corpora. Further error analysis measures the effectiveness of our algorithm for each language tested, and reveals several issues with the previous method and source data. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
9110-9119
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—