Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AM9K7GAHD" target="_blank" >RIV/00216208:11320/25:M9K7GAHD - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195918261&partnerID=40&md5=9d9dee6a5b028fa5ef4a6c7422abd3c5" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195918261&partnerID=40&md5=9d9dee6a5b028fa5ef4a6c7422abd3c5</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing
Original language description
Discourse Representation Structure (DRS) is an innovative semantic representation designed to capture the meaning of texts with arbitrary lengths across languages. The semantic representation parsing is essential for achieving natural language understanding through logical forms. Nevertheless, the performance of DRS parsing models remains constrained when trained exclusively on monolingual data. To tackle this issue, we introduce a cross-lingual training strategy. The proposed method is model-agnostic yet highly effective. It leverages cross-lingual training data and fully exploits the alignments between languages encoded in pre-trained language models. The experiments conducted on the standard benchmarks demonstrate that models trained using the cross-lingual training method exhibit significant improvements in DRS clause and graph parsing in English, German, Italian and Dutch. Comparing our final models to previous works, we achieve state-of-the-art results in the standard benchmarks. Furthermore, the detailed analysis provides deep insights into the performance of the parsers, offering inspiration for future research in DRS parsing. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
11486-11497
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—