All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dependency Transformer Grammars: Integrating Dependency Structures into Transformer Language Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQG6WDX7Q" target="_blank" >RIV/00216208:11320/25:QG6WDX7Q - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85204443275&origin=resultslist&sort=plf-f&src=s&sid=e2b9c7bf82ada12b524d66c7a293503a&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dependency+Transformer+Grammars%3A+Integrating+Dependency+Structures+into+Transformer+Language+Models%29&sl=114&sessionSearchId=e2b9c7bf82ada12b524d66c7a293503a&relpos=0" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85204443275&origin=resultslist&sort=plf-f&src=s&sid=e2b9c7bf82ada12b524d66c7a293503a&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dependency+Transformer+Grammars%3A+Integrating+Dependency+Structures+into+Transformer+Language+Models%29&sl=114&sessionSearchId=e2b9c7bf82ada12b524d66c7a293503a&relpos=0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2024.acl-long.84" target="_blank" >10.18653/v1/2024.acl-long.84</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dependency Transformer Grammars: Integrating Dependency Structures into Transformer Language Models

  • Original language description

    Syntactic Transformer language models aim to achieve better generalization through simultaneously modeling syntax trees and sentences. While prior work has been focusing on adding constituency-based structures to Transformers, we introduce Dependency Transformer Grammars (DTGs), a new class of Transformer language model with explicit dependency-based inductive bias. DTGs simulate dependency transition systems with constrained attention patterns by modifying attention masks, incorporate the stack information through relative positional encoding, and augment dependency arc representation with a combination of token embeddings and operation embeddings. When trained on a dataset of sentences annotated with dependency trees, DTGs achieve better generalization while maintaining comparable perplexity with Transformer language model baselines. DTGs also outperform recent constituency-based models, showing that dependency can better guide Transformer language models. Our code is released at https://github.com/zhaoyd1/Dep_Transformer_Grammars.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics

  • ISBN

    979-8-89176-094-3

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    1543-1556

  • Publisher name

    ACL

  • Place of publication

  • Event location

    Bangkok, Thailand

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article