Linguistic Rule Induction Improves Adversarial and OOD Robustness in Large Language Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATDED4A2K" target="_blank" >RIV/00216208:11320/25:TDED4A2K - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195915375&partnerID=40&md5=16d68f89b42f03ed02b1e1775dbf6a57" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195915375&partnerID=40&md5=16d68f89b42f03ed02b1e1775dbf6a57</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Linguistic Rule Induction Improves Adversarial and OOD Robustness in Large Language Models
Original language description
Ensuring robustness is especially important when AI is deployed in responsible or safety-critical environments. ChatGPT can perform brilliantly in both adversarial and out-of-distribution (OOD) robustness. Still, other popular large language models (LLMs), like LLaMA-2, ERNIE, and ChatGLM, do not perform satisfactorily in this regard. Therefore, it is valuable to study what efforts play essential roles in ChatGPT, and how to transfer these efforts to other LLMs. This paper experimentally finds that linguistic rule induction is the foundation for identifying the cause-effect relationships in LLMs. Accurately processing the cause-effect relationships in LLMs can improve their adversarial and OOD robustness. Furthermore, we explore a low-cost way of aligning LLMs with linguistic rules. Specifically, we constructed a linguistic rule instruction dataset to fine-tune LLMs. To further energize LLMs for reasoning step-by-step with the linguistic rules, we propose the task-relevant LingR-based chain-of-thoughts. Experiments showed that LingR-induced LLaMA-13B achieves comparable or better results with GPT-3.5 and GPT-4 on various adversarial and OOD robustness evaluations. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
10565-10577
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—