All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MELA: Multilingual Evaluation of Linguistic Acceptability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AVDHW2J8W" target="_blank" >RIV/00216208:11320/25:VDHW2J8W - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204436622&partnerID=40&md5=936049d43bab424e20b243a2baa4b851" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204436622&partnerID=40&md5=936049d43bab424e20b243a2baa4b851</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    MELA: Multilingual Evaluation of Linguistic Acceptability

  • Original language description

    In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability-MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language-Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks. https://github.com/sjtu-compling/MELA. © 2024 Association for Computational Linguistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. Annu. Meet. Assoc. Comput Linguist.

  • ISBN

    979-889176094-3

  • ISSN

    0736-587X

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    2658-2674

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    Bangkok

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article