All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Is Transformer-Based Attention Agnostic of the Pretraining Language and Task?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AX7T7VVAC" target="_blank" >RIV/00216208:11320/25:X7T7VVAC - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200685211&doi=10.1007%2f978-3-031-64881-6_6&partnerID=40&md5=a62794440b7cf4cb3595f122ce95dac7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200685211&doi=10.1007%2f978-3-031-64881-6_6&partnerID=40&md5=a62794440b7cf4cb3595f122ce95dac7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-64881-6_6" target="_blank" >10.1007/978-3-031-64881-6_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Is Transformer-Based Attention Agnostic of the Pretraining Language and Task?

  • Original language description

    Since the introduction of the Transformer by Vaswani et al. in 2017, the attention mechanism has been used in multiple state-of-the-art large language models (LLMs), such as BERT, ELECTRA, and various GPT versions. Due to the complexity and the large size of LLMs and deep neural networks in general, intelligible explanations for specific model outputs can be difficult to formulate. However, mechanistic interpretability research aims to make this problem more tractable. In this paper, we show that models with different training objectives—namely, masked language modelling and replaced token detection—have similar internal patterns of attention, even when trained for different languages, in our case English, Afrikaans, Xhosa, and Zulu. This result suggests that, on a high level, the learnt role of attention is language-agnostic. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Commun. Comput. Info. Sci.

  • ISBN

    978-303164880-9

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    29

  • Pages from-to

    95-123

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

  • Event location

    Gqeberha

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article