SLaCAD: A Spoken Language Corpus for Early Alzheimer's Disease Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AY4ZBYQCN" target="_blank" >RIV/00216208:11320/25:Y4ZBYQCN - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195995858&partnerID=40&md5=d80bf77592a0fb67072919f85df6cc8d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195995858&partnerID=40&md5=d80bf77592a0fb67072919f85df6cc8d</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
SLaCAD: A Spoken Language Corpus for Early Alzheimer's Disease Detection
Original language description
Identifying early markers of Alzheimer's disease (AD) trajectory enables intervention in early disease stages when our currently-available interventions are most likely to be beneficial. Research has shown that alterations in speech, as well as linguistic and semantic deviations in spontaneous conversation detected using natural language processing, manifest early in AD prior to some other observed cognitive deficits. Recent studies show that cerebrospinal fluid (CSF) levels serve as useful early biomarkers for identifying early AD, but CSF biomarkers are challenging to collect. A simpler alternative that has seen very rapid development is based on the use of plasma biomarkers as a blood draw is minimally invasive. Associating verbal and nonverbal characteristics from speech data with CSF and plasma biomarkers may open the door to less invasive, more efficient methods for early AD detection. We present SLaCAD, a new dataset to facilitate this process. We describe our data collection procedures, analyze the resulting corpus, and present preliminary findings that relate measures extracted from the audio and transcribed text to clinical diagnoses, CSF levels, and plasma biomarkers. Our findings demonstrate the feasibility of this and indicate that the collected data can be used to improve assessments of early AD. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
21
Pages from-to
14877-14897
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—