All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Three weeks of intermittent hypoxic training affect antioxidant enzyme activity and increases lipid peroxidation in cyclists

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F19%3A10398294" target="_blank" >RIV/00216208:11510/19:10398294 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Sh0kneKIt5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Sh0kneKIt5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00706-019-02451-1" target="_blank" >10.1007/s00706-019-02451-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Three weeks of intermittent hypoxic training affect antioxidant enzyme activity and increases lipid peroxidation in cyclists

  • Original language description

    The aim of the present study was to evaluate the influence of intermittent hypoxic training (IHT) on antioxidant status in elite cyclists. Fifteen male, elite cyclists were randomly divided into the IHT group (IHT-G) and a normoxia control group (CG). The subjects in IHT-G exercised under normobaric hypoxia environment (O-2 = 15.2%) at intensity of 95% of the lactate threshold (LT) for 3 weeks, whereas the CG exercised under normoxia with intensity of 100% LT. The following variables were measured: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), reduced glutathione (GSH), uric acid (UA), total antioxidant status (TAS), malondialdehyde (MDA), and creatine kinase (CK). All variables were evaluated at baseline and post-exercise, both at rest and following the progressive exercise test (PT). After 3 weeks of training, significant intragroup differences occurred in MDA, GSH, and TAS values, and in GPX and CK activity. There were also significant changes in IHT-G before the experiment and after the PT in SOD, GPX, and CK activity, and in levels of TAS and MDA. After the 3 weeks of training, and following the PT, there were significant differences in SOD, CAT, GPX, and CK activity as well as in levels of UA and MDA. In the CG, before and after the intervention, and the PT, SOD, CAT, and CK activity as well as UA, TAS, and MDA concentrations were significantly different from resting condition. IHT significantly affects SOD, CAT, and MDA in competitive cyclists. We observed lower antioxidant enzyme activity and higher MDA concentration in the IHT-G compared to the CG. This confirms that exercise under hypoxia generates higher oxidative stress than the same training loads performed under normoxia conditions. [GRAPHICS] .

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30306 - Sport and fitness sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte für Chemie - Chemical Monthly

  • ISSN

    0026-9247

  • e-ISSN

  • Volume of the periodical

    150

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    8

  • Pages from-to

    1703-1710

  • UT code for WoS article

    000482907600021

  • EID of the result in the Scopus database

    2-s2.0-85070199030