All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Early Warning Systems in inpatient Anorexia Nervosa: A validation of the MARSIPAN-based Modified Early Warning System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F20%3A10418468" target="_blank" >RIV/00216208:11510/20:10418468 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KoBlQR_ITO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KoBlQR_ITO</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/erv.2753" target="_blank" >10.1002/erv.2753</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Early Warning Systems in inpatient Anorexia Nervosa: A validation of the MARSIPAN-based Modified Early Warning System

  • Original language description

    Objective: We aimed to evaluate the validity of a MARSIPAN-guidanceadapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. Methods: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a &quot;gold standard&quot; of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machinelearning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. Results: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). Conclusion: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30306 - Sport and fitness sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Eating Disorders Review

  • ISSN

    1072-4133

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    551-558

  • UT code for WoS article

    000540259300001

  • EID of the result in the Scopus database

    2-s2.0-85086433185