The Exact Real Arithmetical Algorithm in Binary Continued Fractions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F15%3A10315757" target="_blank" >RIV/00216208:11620/15:10315757 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ARITH.2015.20" target="_blank" >http://dx.doi.org/10.1109/ARITH.2015.20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ARITH.2015.20" target="_blank" >10.1109/ARITH.2015.20</a>
Alternative languages
Result language
angličtina
Original language name
The Exact Real Arithmetical Algorithm in Binary Continued Fractions
Original language description
The exact real binary arithmetical algorithm is an on-line algorithm which computes the sum, product or ratio of two real numbers to arbitrary precision. The algorithm works in general Moebius number systems which represent real numbers by infinite products of Moebius transformations. We consider a number system of binary continued fractions in which this algorithm is computed faster than in the binary signed system. Moreover, the number system of binary continued fractions circumvents the problem of nonredundancy and slow convergence of continued fractions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IEEE 22nd Symposium on Computer Arithmetic ARITH 2015
ISBN
978-1-4799-8663-7
ISSN
1063-6889
e-ISSN
—
Number of pages
8
Pages from-to
168-175
Publisher name
IEEE
Place of publication
Neuveden
Event location
Lyon
Event date
Jun 22, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—