All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning in an estimated medium-scale DSGE model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F12%3A00373840" target="_blank" >RIV/00216208:11640/12:00373840 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jedc.2011.01.016" target="_blank" >http://dx.doi.org/10.1016/j.jedc.2011.01.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jedc.2011.01.016" target="_blank" >10.1016/j.jedc.2011.01.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning in an estimated medium-scale DSGE model

  • Original language description

    We evaluate the empirical relevance of learning by private agents in an estimated medium-scale DSGE model.We replace the standard rational expectations assumption in the Smets and Wouters (2007) model by a constant gain learning mechanism. If agents knowthe correct structure of the model and only learn about the parameters, both expectation mechanisms produce very similar results, and only the transition dynamics that are generated by specific initial beliefs seem to improve the fit. If, instead, agents use only a reduced information set in forming the perceived law of motion, the implied model dynamics change and, depending on the specification of the initial beliefs, the marginal likelihood of the model can improve significantly.These best-fitting models add additional persistence to the dynamics and this reduces the gap between the IRFs of the DSGE model and the more data-driven DSGE-VAR model. However, the learning dynamics do not systematically alter the estimated structural para

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    AH - Economics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GCP402%2F11%2FJ018" target="_blank" >GCP402/11/J018: Comparative Approach to Macroeconomic Modeling and Policy Analysis: Introducing Adaptive Learning</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Economic Dynamics & Control

  • ISSN

    0165-1889

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    26-46

  • UT code for WoS article

    000298571200002

  • EID of the result in the Scopus database