Computable categoricity of the Boolean algebra B(omega) with a distinguished automorphism
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F13%3A00394627" target="_blank" >RIV/00216208:11640/13:00394627 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computable categoricity of the Boolean algebra B(omega) with a distinguished automorphism
Original language description
It is proved that every computably enumerable Turing degree is a degree of categoricity of some computable Boolean algebra with a distinguished automorphism. We construct an example of a computably categorical Boolean algebra with a distinguished automorphism, having a set of atoms in a given computably enumerable Turing degree.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra and Logic
ISSN
0002-5232
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
89-97
UT code for WoS article
000321627100001
EID of the result in the Scopus database
—