Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F15%3A00087443" target="_blank" >RIV/00216224:14110/15:00087443 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.pscychresns.2015.03.004" target="_blank" >http://dx.doi.org/10.1016/j.pscychresns.2015.03.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.pscychresns.2015.03.004" target="_blank" >10.1016/j.pscychresns.2015.03.004</a>
Alternative languages
Result language
angličtina
Original language name
Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
Original language description
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
FH - Neurology, neuro-surgery, nuero-sciences
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/NT13359" target="_blank" >NT13359: Advanced Methods for Recognition of MR brain images for Computer Aided Diagnosis of Neuropsychiatric Disorders</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Psychiatry Research: Neuroimaging
ISSN
0925-4927
e-ISSN
—
Volume of the periodical
232
Issue of the periodical within the volume
3
Country of publishing house
IE - IRELAND
Number of pages
13
Pages from-to
237-249
UT code for WoS article
000354552900006
EID of the result in the Scopus database
—