All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F16%3A00088925" target="_blank" >RIV/00216224:14110/16:00088925 - isvavai.cz</a>

  • Alternative codes found

    RIV/65269705:_____/16:00065949

  • Result on the web

    <a href="http://dx.doi.org/10.3389/fnins.2016.00392" target="_blank" >http://dx.doi.org/10.3389/fnins.2016.00392</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fnins.2016.00392" target="_blank" >10.3389/fnins.2016.00392</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research

  • Original language description

    We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EI - Biotechnology and bionics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/NT13359" target="_blank" >NT13359: Advanced Methods for Recognition of MR brain images for Computer Aided Diagnosis of Neuropsychiatric Disorders</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Neuroscience

  • ISSN

    1662-453X

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    AUG

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000381850500001

  • EID of the result in the Scopus database