Sequence Variation of Rare Outer Membrane Protein beta-Barrel Domains in Clinical Strains Provides Insights into the Evolution of Treponema pallidum subsp. pallidum, the Syphilis Spirochete
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F18%3A00101706" target="_blank" >RIV/00216224:14110/18:00101706 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1128/mBio.01006-18" target="_blank" >http://dx.doi.org/10.1128/mBio.01006-18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1128/mBio.01006-18" target="_blank" >10.1128/mBio.01006-18</a>
Alternative languages
Result language
angličtina
Original language name
Sequence Variation of Rare Outer Membrane Protein beta-Barrel Domains in Clinical Strains Provides Insights into the Evolution of Treponema pallidum subsp. pallidum, the Syphilis Spirochete
Original language description
In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponerna pallidum subspecies pallidum, the syphilis spirochete, and identifying its surface-exposed p-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of beta-barrel-encoding regions of tprC, tprD, and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 (tp0548) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) beta-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored beta-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane beta-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum. They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development. IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum, little is known about how their surface-exposed, beta-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the beta-barrel-encoding regions of three OMP loci, tprC, tprD, and bamA, in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within beta-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MBIO
ISSN
2150-7511
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
1-20
UT code for WoS article
000454748900021
EID of the result in the Scopus database
2-s2.0-85048531600