Similarity detection between virtual patients and medical curriculum using R
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F18%3A00104412" target="_blank" >RIV/00216224:14110/18:00104412 - isvavai.cz</a>
Result on the web
<a href="http://ebooks.iospress.nl/volumearticle/50507" target="_blank" >http://ebooks.iospress.nl/volumearticle/50507</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-921-8-222" target="_blank" >10.3233/978-1-61499-921-8-222</a>
Alternative languages
Result language
angličtina
Original language name
Similarity detection between virtual patients and medical curriculum using R
Original language description
This paper presents the domain of information sciences, applied informatics and biomedical engineering, proposing to develop methods for an automated detection of similarities between two particular virtual learning environments - virtual patients at Akutne.cz and the OPTIMED curriculum management system - in order to provide support to clinically oriented stages of medical and healthcare studies. For this purpose, the authors used large amounts of text-based data collected by the system for mapping medical curricula and through the system for virtual patient authoring and delivery. The proposed text-mining algorithm for an automated detection of links between content entities of these systems has been successfully implemented by the means of a web-based toolbox.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Studies in Health Technology and Informatics 255
ISBN
9781614999201
ISSN
0926-9630
e-ISSN
—
Number of pages
5
Pages from-to
222-226
Publisher name
IOS Press
Place of publication
Amsterdam
Event location
Zagreb
Event date
Oct 15, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000455957400043