Nominal Description Theory and Modal Argument
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F15%3A00083862" target="_blank" >RIV/00216224:14210/15:00083862 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nominal Description Theory and Modal Argument
Original language description
My main goal in this talk is to show how a particular type theory can fulfil a role of universal logical language. I will demonstrate how to properly quantify over orders and types in an extended type theory -- which shows its expressibility. I will point at some further possibilities and also limits of extending such type theory. I will conclude that the extended type theory, which is capable to discuss 'lower-level' type-theories, will not result in a hierarchy - which shows its universality.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
AA - Philosophy and religion
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů