Pictorial aspects of mathematical notation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F18%3A00105162" target="_blank" >RIV/00216224:14210/18:00105162 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Pictorial aspects of mathematical notation
Original language description
The core in Wittgenstein’s conception of mathematics can be summed up in the motto that “arithmetical rules are statements of internal relations.” (PPO: p. 390) I am going to focus on Wittgenstein’s insistence on a certain pictorial aspect of mathematical notation, which is, of course, his Tractarian heritage. Mathematical notation must always be capable to depicture a state of affairs. This is true of numbers, but also of mathematical proofs. Numbers and proofs are for Wittgenstein a sort of prototypes of certain activities. Mathematical propositions are statements of internal relations as well. A proof of a mathematical proposition aims to picture or rather lay down its internal relatedness to a system of other mathematical rules. We may say that “the completely analysed mathematical proposition is its own proof.” (PR: p. 192) Proof is so a picture of an experiment, even more “it can be thought of as a cinematographic picture” (RFM: p. 159).
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů