All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Limitation of logical space puts restrictions on the explication of the notions of knowledge, belief, necessity and truth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F19%3A00118736" target="_blank" >RIV/00216224:14210/19:00118736 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14210/19:00113996

  • Result on the web

    <a href="https://sites.google.com/view/trendsinlogic2019/%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F?authuser=0" target="_blank" >https://sites.google.com/view/trendsinlogic2019/%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F?authuser=0</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Limitation of logical space puts restrictions on the explication of the notions of knowledge, belief, necessity and truth

  • Original language description

    I demonstrate that (i) the limitation of logical space (entailed by Cantor's theorem) imposes (ii) limits to the explication of certain important 'propositional' ('intentional') notions, e.g. knowledge. A naive approach to the limitations of both types leads to a group of famous paradoxes, e.g. the Liar Paradox, the Knower paradox. I establish some theorems related to (i) and (ii), partly utilising the paradoxes. They demonstrate similarities and also dissimilarities between the notions of knowledge, necessity, truth, belief and assertion. Unlike Montague, who treated the notions as predicates applied to coding numbers of formulas, I treat them as applied to hyperintensional, fine-grained meanings of sentences. The logical framework employed is a ramified version of (a Church-like) simple theory of types.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    60301 - Philosophy, History and Philosophy of science and technology

Result continuities

  • Project

    <a href="/en/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintensional Meaning, Type Theory and Logical Deduction</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů