Type Theory, Reducibility and Epistemic Paradoxes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F19%3A00118737" target="_blank" >RIV/00216224:14210/19:00118737 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14210/19:00113997
Result on the web
<a href="https://clmpst2019.flu.cas.cz" target="_blank" >https://clmpst2019.flu.cas.cz</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Type Theory, Reducibility and Epistemic Paradoxes
Original language description
The talk continutes in investigation of the capability of type theory (a higher-order epistemic modal logic) to solve epistemic paradoxes. I demonstrate that an assumption of reducibility principle leads to a restoration of Church-Fitch's paradox of knowability.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintensional Meaning, Type Theory and Logical Deduction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů