The Rule of Existential Generalisation and Explicit Substitution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F22%3A00129024" target="_blank" >RIV/00216224:14210/22:00129024 - isvavai.cz</a>
Result on the web
<a href="https://apcz.umk.pl/LLP/article/view/31855/30016" target="_blank" >https://apcz.umk.pl/LLP/article/view/31855/30016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/LLP.2021.011" target="_blank" >10.12775/LLP.2021.011</a>
Alternative languages
Result language
angličtina
Original language name
The Rule of Existential Generalisation and Explicit Substitution
Original language description
The present paper offers the rule of existential generalisation (EG) that is uniformly applicable within extensional, intensional and hyperintensional contexts. In contradistinction to Quine and his followers, quantification into various modal contexts and some belief attitudes is possible without obstacles. The hyperintensional logic deployed in this paper incorporates explicit substitution and so the rule (EG) is fully specified inside the logic. The logic is equipped with a natural deduction system within which (EG) is derived from its rules for the existential quantifier, substitution and functional application. This shows that (EG) is not primitive, as often assumed even in advanced writings on natural deduction. Arguments involving existential generalisation are shown to be valid if the sequents containing their premises and conclusions are derivable using the rule (EG). The invalidity of arguments seemingly employing (EG) is explained with recourse to the definition of substitution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintensional Meaning, Type Theory and Logical Deduction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logic and logical philosophy
ISSN
1425-3305
e-ISSN
2300-9802
Volume of the periodical
31
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
37
Pages from-to
105-141
UT code for WoS article
000701852400001
EID of the result in the Scopus database
2-s2.0-85129552949