Completeness in partial type theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F24%3A00139346" target="_blank" >RIV/00216224:14210/24:00139346 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/logcom/exac089" target="_blank" >https://doi.org/10.1093/logcom/exac089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exac089" target="_blank" >10.1093/logcom/exac089</a>
Alternative languages
Result language
angličtina
Original language name
Completeness in partial type theory
Original language description
The present paper provides a completeness proof for a system of higher-order logic framed within partial type theory. The framework is a modification of Tichý’s extension of Church’s simple type theory, equipped with his innovative natural deduction system in sequent style. The system deals with both total and partial (multiargument) functions-as-mappings and also accommodates algorithmic computations arriving at various objects of the framework. The partiality of a function or a failure of a computation is not represented by a postulated null object such as the third truth value. The logical operators of the system are classical. Another welcome feature of this expressive system is that its consequence relation is monotonic.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintensional Meaning, Type Theory and Logical Deduction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
1465-363X
Volume of the periodical
34
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
32
Pages from-to
1-32
UT code for WoS article
000936329300001
EID of the result in the Scopus database
2-s2.0-85182900627