Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F00%3A00002430" target="_blank" >RIV/00216224:14310/00:00002430 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26
Original language description
The haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB) is the enzyme involved in the degradation ofthe important environmental pollutant g-hexachlorocyclohexane. The enzyme hydrolyzes a broad range of halogenated cyclic and aliphatic compounds. Here, we present the 1.58 A crystal structure of LinB and the 2.0 A structure of LinB with 1,3-propanediol, a product of debromination of 1,3-dibromopropane, in the active site of the enzyme. The enzyme belongs to the a/b-hydrolase family and contains a catalytic triad (Aspl08, His272, and Glu132) in the lipase-like topological arrangement previously proposed from mutagenesis experiments. The LinB structure was compared with the structures of haloalkane dehalogenase from Xanthobacter autotrophicus GJl0 and from Rhodococcus sp. and the structural features involved in the adaptation toward xenobiotic substrates were identified. The arrangement and composition of the a-helices in the cap domain results in the dif ferences in the siz
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CE - Biochemistry
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biochemistry
ISSN
0006-2960
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
46
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—