Putting an Edge to the Poisson Bracket
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F00%3A00039890" target="_blank" >RIV/00216224:14310/00:00039890 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Putting an Edge to the Poisson Bracket
Original language description
We consider a general formalism for treating a Hamiltonian (canonical) field theory with a spatial boundary. In this formalism essentially all functionals are differentiable from the very beginning and hence no improvement terms are needed. We introducea new Poisson bracket which differs from the usual ``bulk'' Poisson bracket with a boundary term and show that the Jacobi identity is satisfied. The result is geometrized on an abstract world volume manifold. The method is suitable for studying systems with a spatial edge like the ones often considered in Chern-Simons theory and General Relativity. Finally, we discuss how the boundary terms may be related to the time ordering when quantizing.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF MATHEMATICAL PHYSICS
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
2000
Issue of the periodical within the volume
41
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
—
UT code for WoS article
000089990200018
EID of the result in the Scopus database
—