Symplectic difference systems: variable stepsize discretization and discrete quadratic functionals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F03%3A00008171" target="_blank" >RIV/00216224:14310/03:00008171 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Symplectic difference systems: variable stepsize discretization and discrete quadratic functionals
Original language description
Discrete quadratic functionals with variable endpoints for variable stepsize symplectic difference systems are considered. A comprehensive study is presented for characterizing the positivity of such functionals in terms of conjugate intervals, conjoinedbases, and implicit and explicit Riccati equations with various forms of boundary conditions. Moreover, necessary conditions for the nonnegativity of these functionals are obtained in terms of the above notions. Furthermore, we show that a variable stepsize discretization of a continuous-time nonlinear control problem leads to a discrete linear quadratic problem and a Hamiltonian difference system, which are special cases of their symplectic counterparts.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F01%2F0079" target="_blank" >GA201/01/0079: Qualitative theory of solutions of difference equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
367
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
67-104
UT code for WoS article
—
EID of the result in the Scopus database
—