All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finite orthodox locally idempotent semigroups having no finite basis of biidentities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F03%3A00008637" target="_blank" >RIV/00216224:14310/03:00008637 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finite orthodox locally idempotent semigroups having no finite basis of biidentities

  • Original language description

    A finitely generated existence variety of orthodox locally idempotent semigroups is constructed which has no finite basis of biidentities within the class of all orthodox semigroups. In addition, ordinary semigroup identities valid in this existence variety also cannot be finitely based. This yields examples of finite orthodox locally idempotent semigroups having both no finite basis of biidentities and also no finite basis of identities in the usual sense.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F01%2F0323" target="_blank" >GA201/01/0323: Equational logic of semigroups and applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2003

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

  • Volume of the periodical

    266

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    48

  • Pages from-to

    446

  • UT code for WoS article

  • EID of the result in the Scopus database