All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of CDK2 active-site hydration: A method to design new inhibitors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F04%3A00009962" target="_blank" >RIV/00216224:14310/04:00009962 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/04:00002156

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of CDK2 active-site hydration: A method to design new inhibitors

  • Original language description

    The interactions between the protein and the solvent were analyzed, and protein regions with a high density of water molecules, as well as structural water molecules, were determined by using molecular dynamics (MD) simulations. A number of water molecules that were in contact with the protein for the whole trajectory were determined. Their interaction energies and hydrogen bonds with protein residues were analyzed. Altogether, 39, 27, 49, and 32 water molecules bound to the protein were found for trajectories of the free CDK2, CDK2/ATP, CDK2/roscovitine, and CDK2/isopentenyladenine complexes, respectively. Positions of observed water molecules were compared with X-ray crystallography data. Special attention was paid to water molecules in the active site of the enzyme, and especially to the deep pocket, where the N9 roscovitine side-chain is buried. Exchange of active-site water molecules with bulk water through the tunnel from the pocket was observed. In the CDK2/isopentenyladenine co

  • Czech name

    Analýza hydratace CDK2 aktivního místa

  • Czech description

    The interactions between the protein and the solvent were analyzed, and protein regions with a high density of water molecules, as well as structural water molecules, were determined by using molecular dynamics (MD) simulations. A number of water molecules that were in contact with the protein for the whole trajectory were determined. Their interaction energies and hydrogen bonds with protein residues were analyzed. Altogether, 39, 27, 49, and 32 water molecules bound to the protein were found for trajectories of the free CDK2, CDK2/ATP, CDK2/roscovitine, and CDK2/isopentenyladenine complexes, respectively. Positions of observed water molecules were compared with X-ray crystallography data. Special attention was paid to water molecules in the active site of the enzyme, and especially to the deep pocket, where the N9 roscovitine side-chain is buried. Exchange of active-site water molecules with bulk water through the tunnel from the pocket was observed. In the CDK2/isopentenyladenine co

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GV201%2F98%2FK041" target="_blank" >GV201/98/K041: HCILAB - human - computer interactions laboratory</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proteins: Structure, Function, and Bioinformatics

  • ISSN

    0887-3585

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    17

  • Pages from-to

    258-274

  • UT code for WoS article

  • EID of the result in the Scopus database