A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F04%3A00009964" target="_blank" >RIV/00216224:14310/04:00009964 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation
Original language description
The cyclin-dependent kinase, CDK2, regulates the eukaryotic cell cycle at the G1; S boundary. CDKs activity is regulated by complex mechanism including binding to positive regulatory subunit and phosphorylation at positive and/or negative regulatory sites [1]. For activation CDK2 requires binding to Cyclin A or Cyclin E. The CDK2 obtains full activity after phosphorylation of the threonine residue (T160) in the activation segment (T-loop) [2]. CDK2 catalyzes the phosphoryl transfer of the adenosine-5-triphosphate (ATP) g-phosphate to serine or threonine hydroxyl in the protein substrate. The CDKs activity is inhibited in several ways, for example, by (de)phosphorylation, interaction with various natural protein inhibitors [3,4], etc. The CDK2 can be negatively regulated by phosphorylation at Y15 and, to a lesser extent, at T14 in the glycine-rich loop (G-loop) [5]. This work describes behavior of the fully active CDK2 (pT160-CDK2/Cyclin A/ATP complex) with substrate peptide (HHASPRK) a
Czech name
A Molecular Dynamics Study of the Cyclin-Dependent Kinase-2 (CDK2) with Substrate Peptide (HHASPRK), Inhibition of CDK2 by Phosphorylation
Czech description
The cyclin-dependent kinase, CDK2, regulates the eukaryotic cell cycle at the G1; S boundary. CDKs activity is regulated by complex mechanism including binding to positive regulatory subunit and phosphorylation at positive and/or negative regulatory sites [1]. For activation CDK2 requires binding to Cyclin A or Cyclin E. The CDK2 obtains full activity after phosphorylation of the threonine residue (T160) in the activation segment (T-loop) [2]. CDK2 catalyzes the phosphoryl transfer of the adenosine-5-triphosphate (ATP) g-phosphate to serine or threonine hydroxyl in the protein substrate. The CDKs activity is inhibited in several ways, for example, by (de)phosphorylation, interaction with various natural protein inhibitors [3,4], etc. The CDK2 can be negatively regulated by phosphorylation at Y15 and, to a lesser extent, at T14 in the glycine-rich loop (G-loop) [5]. This work describes behavior of the fully active CDK2 (pT160-CDK2/Cyclin A/ATP complex) with substrate peptide (HHASPRK) a
Classification
Type
D - Article in proceedings
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LN00A016" target="_blank" >LN00A016: BIOMOLECULAR CENTER</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Materials in Structure Chemistry, Biology, Physics and Technology
ISBN
1211 - 5894
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
42-43
Publisher name
Krystalografická společnost
Place of publication
Praha
Event location
Nové Hrady
Event date
Mar 11, 2004
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—