Ribosomal RNA Kink-turn Motif - A Flexible Molecular Hinge
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F04%3A00010224" target="_blank" >RIV/00216224:14310/04:00010224 - isvavai.cz</a>
Alternative codes found
RIV/68081707:_____/04:00104625
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Ribosomal RNA Kink-turn Motif - A Flexible Molecular Hinge
Original language description
Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in V shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carriedout extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample,on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dyn
Czech name
Ribozomalny RNA Kink-turn motiv - flexibilny molekulovy pant
Czech description
Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in V shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carriedout extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample,on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dyn
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LN00A016" target="_blank" >LN00A016: BIOMOLECULAR CENTER</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Biomolecular Structure & Dynamics
ISSN
0739-1102
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
183-193
UT code for WoS article
—
EID of the result in the Scopus database
—