Supervised classification of plant communities with artificial neural networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00012592" target="_blank" >RIV/00216224:14310/05:00012592 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Supervised classification of plant communities with artificial neural networks
Original language description
Questions: Are artificial neural networks useful for the automatic assignment of species composition records from vegetation plots to a priori established classes (vegetation units)? Is the assignment more accurate (1) if the classes are defined by numerical classification rather than by expert-based classification; (2) if the training data set is selected to include plots that are richer in diagnostic species of particular classes? Material: Species composition records (relevés) from 4186 plots of Czech grasslands. Methods: Plots were classified into 11 phytosociological alliances (expert classification) and into 11 clusters derived from numerical cluster analysis. Some plots were used for training the classifiers, which were the multi-layer perceptrons (MLP; a type of artificial neural network). Other plots were used for testing the performance of these classifiers. Plots used for training were selected (1) randomly; (2) according to higher representation of diagnostic species of par
Czech name
Řízená klasifikace rostlinných společenstev pomocí umělých neuronových sítí
Czech description
Testování umělých neuronových sítí jako metody řízená klasifikace rostlinných společenstev
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
EF - Botany
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA206%2F02%2F0957" target="_blank" >GA206/02/0957: Formalized classification of the semi-natural grassland vegetation of the Czech Republic</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Vegetation Science
ISSN
110-9233
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
407-414
UT code for WoS article
—
EID of the result in the Scopus database
—