Representation of the Variational Sequence by Differential Forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00012697" target="_blank" >RIV/00216224:14310/05:00012697 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Representation of the Variational Sequence by Differential Forms
Original language description
In the paper the representation of the finite order variational sequence on fibered manifolds in field theory is studied. The representation problem is completely solved by a generalization of the integration by parts procedure using the concept of Lie derivative of forms with respect to vector fields along canonial maps of prolongatios of fibered manifolds. A close relationship between the obtained coordinate invariant representation of the variational sequence and some familiar objects of physics, such as Lagrangians, dynamical forms, Euler-Lagrange mapping and Helmholtz-Sonin mapping is pointed out and illustrated by examples.
Czech name
Reprezentace variační posloupnosti diferenciálními formami
Czech description
Článek se zabývá studiem reprezentace variační posloupnosti koneného řádu v teorii pole na fibrovaných varietách. Problém reprezentace je kompletně vyřešen pomocí zobecnění integrace per partes a použitím Lieovy derivace forem podle vektorových polí podél kanonických zobrazení prodloužení fibrovaných variet. Je zdůrazněn vztah mezi získnou souřadnicově invariantní reprezentací variační posloupnosti a známými fyziklními objekty - Lagrangiány, dynamickými formami, Eulerovým-Lagrangeovým zobrazením, Helmholtzovým-Soninovým zobrazením.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F03%2F0512" target="_blank" >GA201/03/0512: Geometric analysis and its applications in physics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Applicandae Mathematicae
ISSN
0167-8019
e-ISSN
—
Volume of the periodical
88 / 2005
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
177-199
UT code for WoS article
—
EID of the result in the Scopus database
—