GENERALIZED KAHLER GEOMETRY AND MANIFEST N=(2,2) SUPERSYMMETRIC NONLINEAR SIGMA-MODELS.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00013564" target="_blank" >RIV/00216224:14310/05:00013564 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
GENERALIZED KAHLER GEOMETRY AND MANIFEST N=(2,2) SUPERSYMMETRIC NONLINEAR SIGMA-MODELS.
Original language description
Generalized complex geometry is a new mathematical framework that is useful for describing the target space of N=(2,2) nonlinear sigma-models. The most direct relation is obtained at the N=(1,1) level when the sigma model is formulated with an additionalauxiliary spinorial field. We revive a formulation in terms of N=(2,2) semi-(anti)chiral multiplets where such auxiliary fields are naturally present. The underlying generalized complex structures are shown to commute (unlike the corresponding ordinarycomplex structures) and describe a Generalized Kahler geometry. The metric, B-field and generalized complex structures are all determined in terms of a potential K.
Czech name
Generalizovany kaehlerovske geometrie a manifestni N=(2,2) supersymetricky nelinearni sigma modely
Czech description
Studujeme sigma modely s N=(2,2) supersymetrie a geometrie jejich cilovych prostorach v jazyce generalizovane complexni geometrie.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BF - Elementary particle theory and high energy physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME%20649" target="_blank" >ME 649: Non-comutative theory of field and projective superspace.</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of High Energy Physics
ISSN
1029-8479
e-ISSN
—
Volume of the periodical
2005
Issue of the periodical within the volume
07
Country of publishing house
SE - SWEDEN
Number of pages
21
Pages from-to
67-88
UT code for WoS article
—
EID of the result in the Scopus database
—