Effects of Thermal Treatment on Laser Generated Aerosols using LA-ETV-ICP-MS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00013748" target="_blank" >RIV/00216224:14310/05:00013748 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Effects of Thermal Treatment on Laser Generated Aerosols using LA-ETV-ICP-MS
Original language description
Aerosol particle size distribution is generally known to be critical for complete sample vaporization upon introduction into an ICP discharge. Particle size dependent composition of laser-produced aerosols has been proved to be responsible for ICP-induced elemental fractionation. The modification of the particle size distribution has been studied based on heating a laser-generated aerosol by means of an electrothermal vaporizer (ETV) installed between an ablation cell and an ICP torch. Overall, 21 singlemetal targets were ablated and heated up by the ETV prior to entering into the ICP discharge. Brass and steel samples were also studied as multielement samples. The aim of this study was a) to modify the particle size distribution towards reduced diameters b) to determine the elemental dependence of the vaporization process, and c) to determine elementdependent laser-induced phase separation into different particle sizes. It was observed that the vaporization depended on melting points
Czech name
Effects of Thermal Treatment on Laser Generated Aerosols using LA-ETV-ICP-MS
Czech description
Aerosol particle size distribution is generally known to be critical for complete sample vaporization upon introduction into an ICP discharge. Particle size dependent composition of laser-produced aerosols has been proved to be responsible for ICP-induced elemental fractionation. The modification of the particle size distribution has been studied based on heating a laser-generated aerosol by means of an electrothermal vaporizer (ETV) installed between an ablation cell and an ICP torch. Overall, 21 singlemetal targets were ablated and heated up by the ETV prior to entering into the ICP discharge. Brass and steel samples were also studied as multielement samples. The aim of this study was a) to modify the particle size distribution towards reduced diameters b) to determine the elemental dependence of the vaporization process, and c) to determine elementdependent laser-induced phase separation into different particle sizes. It was observed that the vaporization depended on melting points
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CB - Analytical chemistry, separation
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Canadian journal of analytical sciences and spectroscopy
ISSN
1205-6685
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
6
Country of publishing house
CA - CANADA
Number of pages
9
Pages from-to
353-361
UT code for WoS article
—
EID of the result in the Scopus database
—